PDA Technical Report #26: Implications on Liquid Filter Validation

Maik W. Jornitz, Sartorius Corp.
Filter Qualification
Tests for internal Validation Guides

- **Physical Tests**
 - flow rates/delta p
 - throughput
 - steam sterilizability
 - pressure and temperature resistance
 - autoclavibility

- **Biological Tests**
 - integrity test correlation to bacteria retention
 - bubble point
 - diffusion
 - bacteria retention after 1/20 steam cycles

- **Tests according to USP 24**
 - particle realease (asbestos release)
 - extractable substances/heavy metals
 - oxidizable substances
 - biosafety
 - endotoxin

- **Extractables Tests**
 - extractable analysis with NVR
Validation of filters should include microbiological challenges according to ASTM F838

Challenge conditions should simulate "worst case" production conditions (pH, temp., flow rate, pressures etc.)

Challenge fluid should simulate product as closely as in practice
It is not necessary to conduct validation studies on each individual product within a product group.

Acceptable to have tests conducted by filter manufacturers.

It is the responsibility of the filter user to have the test data available.

Reaction-Technical Report 26

The report was accomplished by members of the FDA, biopharmaceutical industry, consultants and filter manufacturer under the moderation of PDA.

Main purpose:

“This document should be considered as a guide; it is not intended to establish any mandatory or implied standard”
6.11 Viability Testing

✓ evaluation of potential bactericidal effects of the product solution

✓ adding of *Brevundimonas diminuta* main culture to product solution

✓ sampling, filtration and colony counting after different exposure times (< 1 log reduction)

✓ necessary for product with unknown behavior

✓ determine the Bacteria Challenge test method
6.11 Viability Testing

- customers product solution
 - unknown toxicity
 - Viability Test in product solution
 - bactericidal
 - Bacteria Challenge Test with placebo solution (challenge without toxic components)
 - 1 or 3 product lots with 3 filter lots
 - not bactericidal
 - Bacteria Challenge Test with original solution (high volume challenge)
 - 1 or 3 product lots with 3 filter lots
 - Viability Test in product solution
 - bactericidal
 - Bacteria Challenge Test after filtration (challenge of used cartridges)
 - cartridges from customers process
 - cartridges from lab filtration
 - not bactericidal
 - Bacteria Challenge Test with original solution (without toxic comp.)
 - 1 or 3 product lots with 3 filter lots

1 or 3 product lots with 3 filter lots
6. Bacteria Challenge Testing

microbial retention studies on filter devices

- spiking of the drug product with *Brevundimonas diminuta* according to ASTM 838-83 or actual bioburden

- challenge concentration > 10^7/cm² filtration area

- testing conditions simulate the actual process conditions i.e. pleated cartridges or disc sizes, flowrate etc.
6.1 Microbial Retention

„...factors potentially affecting microbial retention include filter type (structure, base polymer...), ...fluid components (formulation,...), ...fluid properties (pH, viscosity, osmolarity, ionic strength), ...process conditions (temperature, pressure differential,...) and the specific characteristics of the actual bioburden in the product.“
6.2.2 Microbial Retention

„... microbiological challenge tests with low bubble point (bubble point close to the specification) filter should be taken into account...“

Specific validation membranes required!
4.5 Chemical Compatibility

“...it is important to include all of the filter system components under investigation.”

“Numerous chemical interaction possibilities exist in a filter system.”

“A simple chemical compatibility chart will often not provide enough information for predicting filter system compatibility, thereby requiring additional testing.”
Example

<table>
<thead>
<tr>
<th>Extraction with RO-Water</th>
<th>Bubble Point [bar]</th>
<th>Burst Pressure [bar]</th>
<th>NVR [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction 0.1% H₂O₂ 7 days, 60°C</td>
<td>2.5 (IPA/H₂O)</td>
<td>0.52</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1 (IPA/H₂O)</td>
<td>0.14</td>
<td>41</td>
</tr>
</tbody>
</table>

Incompatibility of the PP-membrane against the media:
- Bubble point decreases with disintegration of the membrane
- The chemically attacked membrane loses the physical strength (Burst pressure testing)
- The fluid is contaminated by extractables - degradation (NVR)
- Special tests required with SEM´s

Appropriate compatibility testing using multiple test methodologies is required
4.6 Adsorption Analysis

„Adsorption is the binding of formula components onto the filter (primarily onto the membrane)“

„It should be determined if adsorption is a problem; if so, it should be addressed.“

Evaluation of the adsorptive properties with the actual product contact and process conditions
4.4 Extractables

„Manufacturers can provide appropriate data on extractable levels and identities from filters...“

„Analytical techniques suitable... ...GC, HPLC, HPCE and GC-MS...“

„Most filter manufacturers test for extractables using a standard solvent (typically water). The filter user is responsible for obtaining extractable data for the drug product formulation.“
Human Drug cGMP Notes (1994):

Drug manufacturers do not have to test sterile products for filter extractables. In most cases the extractables cannot be detected because the drug product interferes with the test methods and the quantities present are very low..... *This does not mean that the drug manufacturer does not need to have information concerning filter extractables. They must have data showing the identity, quantity and toxicity of the extractables.... This information can be supplied by the filter manufacturer.*

(Motisse, FDA, Ref. 21 CFR 211.65, Equipment Construction)
Extractable Testing
Proposed Methodology

Filtration Device
1 autoclaving cycle, 134°C, 2 bar, 30 min

Extraction:
1000 ml water, 24 h, 80 °C, stirring

Concentrated (to 10 ml)
- GC-MS
 opt. FID/NPD-Det.
- RP-HPLC (UV-Det.)
 Peak-Identif.: FTIR/GC
 opt. SEC (GPC) with UV or RI Detection
 Peak Identif.: FTIR
 opt. HPCE/SFC (UV/VIS or MS Detection)

Original Extract
- TOC, pH, NVR, Ions
- RP-HPLC (UV-Det.)
 Peak-Identif.: FTIR/GC
 opt. SEC (GPC) with UV or RI Detection
 Peak Identif.: FTIR
 opt. HPCE/SFC (UV/VIS or MS Detection)

Concentrated (to 10 ml)
- GC-MS
 opt. FID/NPD-Det.
- RP-HPLC (UV-Det.)
 Peak-Identif.: FTIR/GC
 opt. SEC (GPC) with UV or RI Detection
 Peak Identif.: FTIR
 opt. HPCE/SFC (UV/VIS or MS Detection)

Original Extract
- NVR, Ions
- GC-MS
 opt. FID/NPD-Det.
- RP-HPLC (UV-Det.)
 Peak-Identif.: FTIR/GC
 opt. SEC (GPC) with UV or RI Detection
 Peak Identif.: FTIR
 opt. HPCE/SFC (UV/VIS or MS Detection)
4.3 Particle Shedding

„Particulate contamination from the filter and process should be evaluated and considered... Tests should be conducted…“

- use of modern analytical methods
 - laser scattering, SEM
- particle amount and size detection

Detection of particle retention or particle release by filter cartridges under process conditions with actual product
7. Integrity Testing

- When → pre- or/and post filtration
- What → filters in series

 redundant filtration (0.2/0.2 as a unit)

- How → exact description of the individual integrity tests product or water wetted
7.3 Product Integrity Testing

Bubble Point

\[
P_{B\text{BP}_{\text{min}}} = \frac{W_{\text{BP}_{\text{min}}} \times P_{\text{BP}_{\text{avg}}}}{W_{\text{BP}_{\text{avg}}}}
\]

Test Pressure

\[
T_{\text{P}_{\text{PW}}} = \frac{M_{\text{TP}_{\text{WW}}} \times P_{\text{BP}_{\text{avg}}}}{W_{\text{BP}_{\text{avg}}}}
\]

Diffusion Test

\[
D_{\text{FL}_{\text{PW}}} = \frac{D_{\text{FL}_{\text{WW}}} \times D_{\text{FPW}}}{D_{\text{FWW}}}
\]
7.6 Integrity Test Failure

TR #26 includes a Trouble Shooting Guide in case of Integrity Test Failures:

1. Steps & Actions when failing

2. Definition when a filter has to be classified failed

- Filter fails first time \rightarrow Measurements & Actions
- Filter fails second time \rightarrow Wetting with solvent
- Filter fails third time \rightarrow Filter failed
Other Evaluations

Definitions in:

- Thermal Stress
- Sterilization
- Hydraulic Stress Resistance
- Toxicity Testing
- Filter Configuration
- Flow Rates
Conclusion

✔ PDA Technical Report #26 is the most detailed, comprehensive and descriptive document in respect to liquid filter validation.

✔ It has not been meant as an industrial standard, but is often enough used as such.

✔ Filter users have to be aware about it, because it is utilized by regulatory authorities.

✔ Others will follow, e.g. ISO 13408-2.
Conclusion, cont.

Validation support by suppliers/consultance is accepted and often required!

When doubts e.g. FDA should be contacted at the earliest stage!

Training never to be forgotten!
Danke schön !
Thank you !